FDGPET/CT の被曝リスク評価

放射線医学総合研究所名誉研究員 飯沼 武(医学物理士)

メールアドレス:we76gfs5@mtg.biglobe.ne.jp ご質問のある方はメール下さい

1)背景

FDGPET による癌検診 - 日本独自の方法論 FDGPET から FDGPET/CT への急激な変化 運用のためのガイドラインの作成 被曝リスクは避けて通れない

2)目的

FDGPET/CT 検査の被曝リスクの定量的評価

内部被曝と外部被曝の複合被曝

癌検診として健康人が対象 - 核医学検査としては始めて

FDGPET/CT 検診の利益:今後の検討課題

3)FDGPET/CT の被曝リスク計算の考え方-1

FDGPET/CT 検査1回当りのリスクの計算(複数回は加算)

FDG の内部被曝と CT の外部被曝を実効線量で求め、加算する

LNT モデルに基づく致死的発癌の生涯リスク係数を乗ずる

性・年齢階級別の平均余命の 1/2 を乗じて、損失余命(人年)を得る

4)FDGPET/CT の被曝リスク計算の考え方-2

FDGPET Only F18-FDG の内部被曝のみ

CTの外部被曝 a)吸収補正 b)通常診断

FDGPET/CT:両者の実効線量の加算

5)F18-FDG の内部被曝線量

ICRP Publication 80

表: F18 - FDG の吸収線量と実効線量(改訂)

		•	•		
	Adult	15 year	10 year	5 year	1 year
吸収線量 (Bladder)	1.6E-01 mGy/MBq	2.1E-01	2.8E-01	3.2E-01	5.9E-01
実効線量	1.9E-02 mSv/MBq	2.5E-02	3.6E-02	5.0E-02	9.5E-02

Pub.80 でも Critical Organ は Bladder

6)日本人における FDGPET 実効線量の算定

成人 5MBq/kg 体重:男 60kg 女 50kg 投与量:男 300MBq 女 250MBq

5 歳小児 2MBq/kg 体重:20kg 投与量:40MBq

実効線量 成人男 1.9E-02*300=5.7mSv、女 1.9E-02*250=4.8mSv

実効線量 5歳小児 5.0E-02*40=2.0mSv

7)FDGPET/CT における CT の実効線量

Biograph Sensation 16の数値

成人 a.吸収補正用:1.4mSv b.診断条件:12.4mSv 青少年 a.吸収補正用:1.4mSv b.診断条件:7.0mSv

日医放小児 CT ガイドライン参照

8)FDGPET/CT の合計実効線量

FDG 内部被曝+CT 外部被曝:実効線量として

成人:(a)吸収補正 男 5.7+1.4=7.1mSv 女 4.8+1.4=6.2mSv

(b)通常条件 男 5.7+12.4=18.1mSv 女 4.8+12.4=17.2mSv

5 歳小児:(a)低線量条件 2.0+1.4=3.4mSv (b)通常条件 2.0+7.0=9.0mSv

9)致死的発癌の生涯リスク(ICRP60)

表: Fatal cancer risk coefficient by age at exposure (%/Sv)

年齢(年)	0-20	21-40	41-60	61-80	>80
リスク(%/Sv)	11.5	5.5	2.5	1.2	0.2

10)死亡率:成人男女、PET only(5.7 と 4.8mSv) E-05 は 10⁻⁵

年齢(年)	15-20	21-40	41-60	61-80	>80
死亡率(E-05)男	65.6	31.4	14.3	6.84	1.14
死亡率(E-05)女	55.2	26.4	12.0	5.76	0.96

11)死亡率:成人男女、PET/CT 吸収補正(7.1 と 6.2mSv)

年齢(年)	15-20	21-40	41-60	61-80	>80
死亡率(E-05)男	81.7	39.1	17.8	8.52	1.42
死亡率(E-05)女	71.3	34.1	15.5	7.44	1.24

12)死亡率:成人男女、PET/CT 通常診断(18.1 と 17.2mSv)

年齢(年)	15-20	21-40	41-60	61-80	>80
死亡率(E-05)男	208	99.6	45.3	21.7	3.62
死亡率(E-05)女	198	94.6	43.0	20.6	3.44

13)死亡率:小児(5歳)

PET only 23.0E-05

PET/CT 吸収補正 39.1E-05 PET/CT 通常診断 104.0E-05

14)リスクを損失余命として算出

損失余命:失うであろう余命の長さ(人・日)

損失余命:生涯死亡率*平均余命の1/2(性・年齢階級)

放射線発癌が生涯にわたって均等に発生

15)成人男女:損失余命 FDGPET only

年齢	死 亡 率	平均余命	損失余命	死 亡 率	平均余命	損失余命
	(男)	(男)	(男)	(女)	(女)	(女)
20-24	31.4	57.22	3.28	26.4	64.04	3.09
30-34	31.4	47.56	2.73	26.4	54.23	2.61
40-44	14.3	38.04	0.99	12.0	44.51	0.97
50-54	14.3	28.93	0.76	12.0	35.03	0.77
60-64	6.84	20.57	0.26	5.76	25.94	0.27
70-74	6.84	13.15	0.16	5.76	17.32	0.18

死亡率:人 E-05 平均余命:年 損失余命:人·日

16)成人男女:損失余命 FDGPET/CT 吸収補正条件

年齢	死 亡 率	平均余命	損失余命	死 亡 率	平均余命	損失余命
	(男)	(男)	(男)	(女)	(女)	(女)
20-24	39.1	57.22	4.08	34.1	64.04	3.99
30-34	39.1	47.56	3.39	34.1	54.23	3.37
40-44	17.8	38.04	1.24	15.5	44.51	1.26
50-54	17.8	28.93	0.94	15.5	35.03	0.99
60-64	8.52	20.57	0.32	7.44	25.94	0.35
70-74	8.52	13.15	0.20	7.44	17.32	0.24

17)成人男女:損失余命 FDGPET/CT 通常撮影条件

年齢	死 亡 率	平均余命	損失余命	死 亡 率	平均余命	損失余命
	(男)	(男)	(男)	(女)	(女)	(女)
20-24	99.6	57.22	10.4	94.6	64.04	11.1
30-34	99.6	47.56	8.64	94.6	54.23	9.36
40-44	45.3	38.04	3.14	43.0	44.51	3.49
50-54	45.3	28.93	2.39	43.0	35.03	2.75
60-64	21.7	20.57	0.81	20.6	25.94	0.98
70-74	21.7	13.15	0.52	20.6	17.32	0.65

18) 小児(5歳)の損失余命

平均余命は男子 73.96 年、女子 80.88 年

- a) FDGPET only 男:3.10(人·日) 女:3.39(人·日)
- b) FDGPET/CT 吸収補正条件 男:5.27(人・日) 女:5.77(人・日)
- c)FDGPET/CT 通常撮影条件 男:14.0(人·日) 女:15.3(人·日)

19)考察 - 1

F18-FDG による内部被曝 + CT による外部被曝 FDGPET only、FDGPET/CT 吸収補正と通常撮影 成人男女 15 - 84 歳 小児 5 歳

被曝リスク:LNT 仮説による損失余命(人年)

20)考察 - 2

損失余命:成人では年齢が小さいほど、大きい 小児については、正確な投与量が不明で、結果は不正確 被曝線量については最適化の研究が重要

21)考察 - 3

FDGPET/CT の撮影ガイドラインの作成 FDCPET/CT 癌検診の有効性の評価 核医学会を中心に大規模な調査研究 LNT 仮説への疑問:今後の課題

22)結 論

FDGPET/CT 癌検診の利益リスク分析の必要性 核医学診断と X 線診断の融合:新しいモダリティ

「予防画像医学」:新しい癌の二次予防