

Background and Purpose

Elastography:

Non-invasive method for measuring viscoelastic modulus

Ivasive method for measuring viscoelastic modulus				
	Classification of USE			
MRE (Magnetic resonance elastography)			Strain	Shear wave
 Using MRI (magnetic resonance imaging) Advantages: Deep inside measurements 		Manual compression	Strain	SWF
USE (Ultrasound elastography)Using ultrasound system		Acoustic radiation force impulse	ARFI imaging	Shear wave elastography
Advantages: Real-time measurements		Mechanical external vibration		Transient elastography

lssues:

Different elastography systems produce different measurement values. Therefore, the same standard value cannot be used as an imaging biomarker across elastography systems.

Purpose:

Environmental construction for standardization of elastography and development of MRE / USE dual-use phantom

2

4

- Shear wave speed (SWS) change -3.6% over 18 months
- Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: a comparative study with transient elastography and magnetic resonance elastography. J Med Ultrason 2022 Apr;49(2):143-152, doi: 10.1007/s10396-022-01190-x.

Conclusion

- We have constructed a viscoelasticity measurement environment with a wide frequency range of about 1 to 500Hz.
- Our multimodal visco-elastic phantoms for MR and US elastography fulfilled the QIBA specifications, which include the speed of sound, attenuation coefficient, and long-term stability.
- The developed phantoms will help to evaluate the bias and variance between different elastography systems and potentially be used for quality assurance and quality control for MR and US elastography.

Appendix: Phantoms with Multiple Physical Properties

Various types of polyacrylamide gel phantoms can be made by changing the amounts of acrylamide and N,N'-methylenebisacrylamide.

7